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Abstract A simple derivation is given of the expression
describing the anisotropy decay of luminescence for a so-
lution of molecules that can only undergo rotational diffu-
sion about a single cylindrical axis. The usual derivations
of the anisotropy decay for this cylindrical model have sim-
ply taken limiting cases of the equations resulting from the
general treatment of the anisotropy decay of a completely
anisotropic rotator or the rotation of an ellipsoid. The argu-
ments presented here can be understood without the mathe-
matical sophistication required to follow the general deriva-
tions for the rotational diffusion of a completely anisotropic
rotator or ellipsoids. The underlying physical mechanisms
leading to a multiple exponential decay of the fluorescence
anisotropy signal from a single axis rotating cylinder are
clearly shown by following this derivation. The resulting ex-
pression for the anisotropy decay is not new. However, the
derivation is easily understood, and this article is meant as an
introduction to the more advanced treatments of anisotropy
decay by rotational diffusion. After presenting the deriva-
tion of the rotating cylinder, the corresponding steps of these
general treatments and this simple model are indicated. The
model is of special interest for describing the anisotropy de-
cay resulting from rotations of proteins within membranes.
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Introduction

This is an introductory account, involving a simple model of
rotational diffusion, to better understand the more complex
models describing the time course of an anisotropy signal
measured from a fluorescent sample that has been excited by
a light pulse. Fluorescence, phosphorescence and absorption
of spectroscopic reporter molecules are the most common
spectroscopic parameters for which the anisotropy is mea-
sured. In biological experiments it is common to attach a
small spectroscopic reporter molecule to larger molecules in
order to acquire information about the rotational freedom of
these complexes either free in solution or in conjunction with
other macromolecular structures. Such measurements have
been applied to the study of macromolecules that are embed-
ded in biological membranes, free rotations of molecules in
solution, and bending, torsional twisting, and internal mo-
tions of molecular groups relative to the structure of a larger
“host” structure. The functional form of the time depen-
dence, the quantitative decay times and the magnitude of the
anisotropy changes indicate the size and shape of the rotating
species, the viscosity or other dissipative effects of the sur-
roundings, and physical restrictions, which may retard the
rotational freedom of the rotator.

However, the information from such measurements is lim-
ited by the practical difficulties in analyzing the anisotropy
curves, and by the difficulty in choosing an appropriate model
for interpreting the data. The solution for the decay of the
luminescence anisotropy of a freely rotating rigid hydro-
dynamically anisotropic body has been described in gen-
eral [1–4]; the signal consists of five exponentially decaying
terms. The derivations in these publications parallel pre-
vious work [5–8], and a more recent account considering
the theory for extended applications can be consulted [9].
If restrictions hinder the rotational freedom of even very
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symmetrical molecules, more complicated functions are re-
quired to describe the time dependence of the anisotropy
[10]. The difficulties of an analysis in terms of these gen-
eral models are usually circumvented by considering the
anisotropy decay of simpler models, such as the free rotation
of a sphere (one exponential) or an ellipsoid (three expo-
nentials), or restricting the rotations to one axis only (two
exponentials). It is the last model, the rotation about one
molecular axis, which is the topic of this work.

The simple model of a cylinder rotating only about its
symmetry axis has been invoked to interpret the results of
experiments involving the rotations of elongated proteins,
DNA [11, 12] and molecules in membranes [13]. The math-
ematical description of the luminescence anisotropy decay of
a rigid cylinder diffusing about only one cylindrical axis has
not been derived from first principles. It is easily obtained by
setting all the rotational diffusion constants, except one, to
zero in the general description of a freely rotating anisotropic
rigid body (or rotating ellipsoid). This correctly predicts two
exponential anisotropy decays [11], and the exponential time
constants differ by exactly a factor of four. However, even
though the resulting mathematical expression is correct, the
physical process underlying the two decay phenomena is not
evident from this type of derivation. One might think that
only a single anisotropy decay constant should correspond
to a single axis of rotation, because the cylinder undergoes
a simple rotational diffusion movement around only a sin-
gle axis. This seems reasonable by analogy to translational
diffusion along a single Cartesian axis [14–17].

These general theoretical derivations of the time depen-
dent fluorescence anisotropy for a completely anisotropic
freely rotating body [2–4] are straightforward, but mathe-
matically complex. For those unfamiliar with Wigner ro-
tation matrices, spherical harmonic functions and Legendre
polynomials, the details of these calculations, which embody
the physics of the problem, remain obscure. Even the general
solution of the rotational diffusion equation for a freely ro-
tating sphere, which has only a single exponential anisotropy
decay, involves an expansion in spherical harmonics [18] or
associated Legendre polynomials [16, 19]; the excitation and
emission processes photoselect only a single relaxing com-
ponent from an infinite number of individual components.
Why a cylinder rotating about its cylinder axis requires two
time constants to describe the Brownian anisotropic decay,
even though only one diffusive motion is involved, is not
obvious. Even if one studies in detail the derivation for an
anisotropic rotator, it is non-trivial to understand the cor-
respondence between the separate rotational axes and the
observed number of components of the anisotropy decay.

Theoretical treatments of the fluorescence anisotropy de-
cay for an arbitrary, anisotropic free rigid body begin with the
rotational diffusion equations that were first solved by Favro
[1]. Favro’s landmark study does not treat the observation

of rotations by spectroscopic means, but presents a general
solution to the diffusion equation. The treatments of [2, 3]
use the equations and ideas of Favro as starting points for
their discussions. The sophisticated presentation by Favro
is extremely difficult, if not practically impossible, to fol-
low without advanced mathematical prerequisites. The later
extensions of Favro’s work to derive expressions for fluores-
cence anisotropy decay, although more amenable to a larger
audience provided that one accepts the starting premise of
Favro’s work, are still very challenging to understand. The
result is that most experimental practitioners simply use the
elegantly presented equations by [2–4], and amend them to
fit their presumed models. This is certainly a valid proce-
dure; however, as discussed above, understanding the rela-
tion between the components of the anisotropy decay and the
symmetry of the rotating object is not straightforward, even
in the case of a simple cylinder undergoing rotational diffu-
sion around only its cylinder axis. For instance, the question
arises whether the separate exponentially decaying compo-
nents can be assumed to arise from some physical motion,
or is it a result of the method of carrying out the experiment.

A description of a simple case, which is not based upon
these more difficult general treatments, would be helpful.
Derivations of a freely rotating sphere, without referring to
the results for anisotropic rotators, have been presented [14,
20, 21]; indeed, the derivations for spherical rotators were
published long before the general case for anisotropic ro-
tators was presented. In his second paper on the theory of
Brownian movement [14, 22] Einstein discussed the rota-
tional diffusion of a sphere. He gave the equation for the
averaged squared angular deviation of the polar angle (the
angle between the laboratory z-axis and the selected vec-
tor fixed within the sphere) as a linear function of time,
〈(�φ)2〉av/t = kT/(4πηr3) = Dr , where Dr is the rota-
tional diffusion constant for a sphere. This was later de-
rived explicitly by Debye [20, 23], in relation to the analysis
of dielectric dispersion experiments. This simple model for
spheres undergoing free rotational diffusion has been widely
applied to interpret experiments of fluorescence anisotropy
decay. The derivation involves the expression of the angular
movement in terms of limiting small increments. The deriva-
tion for the anisotropy decay of rotating ellipsoids is much
more complex [5, 19, 24].

The topic of this report is a simple derivation of the
anisotropy decay for a rotating cylinder diffusing only around
its cylindrical axis. The derivation is easy to follow (involv-
ing only algebra and some trigonometry), and it also shows
clearly the coupling between the physical model of molec-
ular rotation and the experimental method of observation.
Analogies can then be drawn with the more general, compli-
cated models of rotational diffusion and anisotropy decay.

The goal of this paper is more pedagogical. The result-
ing expression for the time dependent anisotropy decay
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for a cylinder rotationally diffusing only about its cylin-
der axis, Eq. (10a), is not new. The results are identical to
previous publications. When deriving the expression for the
anisotropy decay of this model, only knowledge of Fourier
Series and trigonometric manipulations is required. There-
fore, many of the important and interesting correlations
between the anisotropy measurement and the theoretical
derivations, which are also present in the general theoretical
treatments of the more complex cases, can be appreciated by
a larger audience.

Parameterization of the problem

Figures 1 and 2 define the parameters used to describe the ro-
tation of a molecule with arbitrarily directed absorption and
emission dipoles about the molecular cylindrical axis (n̂).
The polar angle, ϕ, describes the deviation of the molecular
axis n̂ from the ẑ axis of the laboratory coordinates frame. θ

is the angle between the x̂ axis and the projection of the n̂ axis

Fig. 1 Right-handed vector coordinate system defining the orientation
of the cylindrical rotation axis (A), the absorption dipole (â) and the
emission dipole (ê). θa and θ e are the angular deviations of the absorp-
tion dipole and the emission dipole, respectively, from the n̂ axis. The
electric field of the exciting light is orientated parallel to the ẑ axis. The
x̂� vector indicates the x molecular axis of the cylinder. This axis is
defined for every molecule such that it is perpendicular to the n̂ vector
and is orientated toward the laboratory z axis (see the text). Details of
the figure are given in the text

Fig. 2 Coordinate of the cylindrical system. The ẑ vector is identical
to the n̂ vector. The x̂�, vector is always oriented toward the laboratory
ẑ axis as discussed in the legend for Fig. 1 and the text. The angle
� depicts the azimuthal angle of an arbitrary vector of the molecular
system within this cylindrical coordinate system

onto the x̂ ŷ plane. Thus ϕ and θ are the normal polar angles
representing the orientation of the n̂ axis relative to the lab-
oratory x̂ ŷ ẑ coordinates. The values of ϕ and θ are random
within the ensemble of molecules, but they are assumed to
remain constant for each molecule for the time of observa-
tion (restricted motion, see Fig. 2); however, each molecule
is free to rotate about the molecular n̂ axis. � is the azimuthal
angle describing the angular orientation of any vector in the
molecular coordinate frame about the n̂ axis. The angle, �,
for each molecule, is defined within the plane perpendicular
to the n̂ vector for that molecule (see Figs. 1 and 2), and �

increases in the direction of the vector cross product, n̂ × ẑ.
The � = 0 position for any molecular vector, â, is defined
by maximizing the dot product, â · ẑ, where â is a molecular
vector (such as the absorption â and emission ê transition
dipoles), which can rotate about n̂. The vector, x̂ϕ of Figs. 1,
2, and 4, defines the direction where �= 0 within the plane
perpendicular to n̂. ŷϕ , which is defined in Fig. 4, is consis-
tent with a right-handed coordinate system with the n̂ vector
as the z-axis. The molecules all have different values of n̂, xφ ,
and ŷφ , each with corresponding values of the angles φ, θ

and �. These angles are closely related to the Euler angles
describing the rotation within Cartesian coordinate systems
[25, 26]. The �= 0 position has been defined differently
than for the corresponding Euler angle, because we define
� = 0 for each ϕ and θ separately. We use the generic �

to indicate the angular position of a selected position within
a cylindrical molecule, referring to its rotational position.
Specifically, we define the angle for the absorption and emis-
sion dipoles relative to the molecular n̂ axis about which the
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Fig. 3 The two Fourier components of the angular distribution of the excited population of molecules. The shaded areas indicate the angular
displacements of the two components separating the extremes and the minima of the distributions

molecule rotates as � = φa for absorption, and as � = φe for
emission.

Diffusion equation and general solution

The rotational diffusion equation for a cylinder rotating
about the cylindrical axis is easily obtained from the gen-
eral isotropic rotational diffusion equation with angular co-
ordinates [5, 15, 18–20] by disregarding the terms involving
changes in the orientation of the cylindrical axis. The result
is the differential equation

D�

∂2

∂�2
P(�, t) = ∂

∂t
P(�, t) (1)

where P(�, t) is the probability that the cylinder has an
angle � at time t provided that the distribution is defined
by P(�, 0) at t = 0. D� is the rotational diffusion constant
about the molecular axis n̂. This model is also applicable to a
symmetrical ellipsoid rotating around only one axis; one has
only to use the correct rotational diffusion constant. Since the
rotational diffusion constant is Dφ = kT/ fr [22], where k is
the Boltzmann’s constant, T is the temperature in Kelvin, and
fr is the rotational diffusion constant about the rotation axis.
A convenient list of fr for different geometries can be found
in the book by Berg [17] and in Memming [5]. Note that
equation 1 is simply the one dimensional diffusion equation,
in terms of the angular coordinate �. The dependence of
P(�, t) upon ϕ and θ need not be considered to analyze the
diffusion phenomenon since we assume that ϕ and θ remain
constant. Equation (1) holds for every distribution over �,
for each particular ϕ and θ . P(�, 0) does depend upon ϕ and

θ ; however, we will eventually integrate the total molecular
ensemble distribution over all values for these angles.

A particular real solution to Eq. (1) is

(ak cos(k�) + bk sin(k�))e−k2 Dt ,

where ak and bk are constants. P(�, t) = P(� + 2π, t), so
k must be an integer. Since Eq. (1) is linear, a more general

Fig. 4 The coordinate system of Fig. 1 clarifying the orientations of
the emission dipole, ê, and the absorption dipole, â, and the azimuthal
angle between them, �ea

Springer



J Fluoresc (2006) 16:761–771 765

solution is a sum of all possible particular solutions given
above, which is a Fourier series expansion.

P(�, t) = a0 +
∞∑

k=1

(ak cos(k�)) + (bk sin(k�)) e−k2 Dt (2)

The initial distribution at t = 0 is a related Fourier series and
can be used to solve for the ak and bk according to

P(�, 0) = a0 +
∞∑

k=1

(ak cos(k�)) + (bk sin(k�)), (3)

where, according to the theory of Fourier expansions

a0 =
(

1

2π

)∫ π

−π

P(�, 0)d� (3a)

ak =
(

1

π

) ∫ π

−π

P(�, 0) cos(k�)d� (3b)

bk =
(

1

π

) ∫ π

−π

P(�, 0) sin(k�)d� (3c)

Therefore, in order to find the general solution to the rota-
tional diffusion equation, Eq. (1), we only need to know the
initial distribution P(�, 0). Equations (3a)–(c) are used to
calculate the Fourier coefficients, and Eq. (2) represents the
time dependence of the angular probability distribution in
terms of a series of exponentials.

General observations about the general solution

We have not yet considered anisotropy experiments, which
will define P(�, 0) by photoselection (the above equations
refer only to the molecular rotation, not to the observation
of the rotation), but several essential features of the problem
are already apparent.

(a) The number of exponential time constants represent-
ing the distribution of rotations of any chosen vector
within the molecular coordinate system, P(�, 0), is
equal to the number of different orders of the Fourier
coefficients left after considering the photo-selection of
excitation and emission detection; that is, for every k
in Eq. (2), there is a corresponding exponential time
decay. If P(�, 0) = an cos(n�) + am cos(m�) then
the time dependence is P(�, t) = an cos(n�)e−n2 Dt +
am cos(m�)e−m2 Dt . The photoselection process defines
the initial distribution, P(�, 0) for � = φa , and øe (see
section c below), and determines the maximum number

of absorption or emission components decaying expo-
nentially in time. This is the maximum number, since
without knowledge of the absorption and emission pho-
toselection processes, the general expression of Eq. (3)
extends over a greater number of Fourier components.
P(�, 0) and P(�, t) do not consider the observation of
the anisotropy (that is, passing the fluorescence through
an emission polarizer), which will usually reduce the
number of the originally excited components consider-
ably. P(�, 0) and P(�, t) only represent the probability
distribution of the angular distribution of the excited ab-
sorption or emission dipoles, and their time dependent
changes. Some of these (most) exponentially decaying
components of P(�, t) cannot be observed when mea-
suring the anisotropy decay, as we will see.

(b) The inverse of the time constants are proportional to k2.
This is an expected result of Einstein/Schmoluchowski
diffusion processes defined by Eq. (1), which involve
the second derivative of the coordinates and the first
derivative of the time (see section c below) [14, 15, 17,
20, 27].

(c) There is a simple heuristic argument describing the form
of Eq. (2). Assume that P(�, 0) = a0 + a1 cos(�) +
a2 cos(2�), which will be shown to be the case for the
absorption transition dipoles that are selected by photos-
election with linearly polarized light. Figure 3 represents
such an initial � distribution in graphic form. According
to Eq. (2) each sinusoidal distribution in Fig. 3 will de-
cay exponentially with time; the k = 2 term decays four
times faster than the k = 1 term. The angular distance
separating the maximums (or minimums) or each curve
from the zero values (dotted lines in Fig. 3) is π

2 for cos�
and π

4 for cos2�. That is, the angular displacement re-
quired to relax to the infinite time distribution (dotted
lines in Fig. 3) for the cos� distribution is double that
of the cos2� term. From the theory of Brownian mo-
tion we know that the average of the squared distance
traveled during a random walk in one dimension along
the x-axis, if the random walk starts at x = 0, is given by
〈x2〉 = 2Dt , where the brackets denote averages and D
is the one dimensional diffusion constant [14, 22]. That
is, the time required to traverse a distance is proportional
to the square of the distance. Thus we would expect
the time required to relax the cos� distribution to be
four times the time required for the cos2� distribution.
Equation (2) shows that this squared dependence holds
for all values of k.

(d) The shape of the separate components of the distribu-
tion (sinusoidal in this case) does not change with time,
only the amplitudes decrease. This property also holds
for the more general cases of rotation, provided the al-
lowed rotations are not restricted. In the present case of
a cylinder, all values of � (referring to the molecular
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axes) about the n̂-axis are equally probable at equilib-
rium (no photoselection). Thus, if the time dependence
of the angular distribution is described by a series of
exponential terms, the amplitudes of these exponential
decays are defined by the photoselection process (which
will define the initial distribution of øa and øe), and
the amplitudes are functions only of these angles (see
Fig. 1). However, for the general treatment of anisotropic
rotators, some of the amplitudes are also functions of the
diffusion constants [2–4].

(e) These amplitudes are represented in terms of the ap-
propriate angular functions (eigenfunctions of the diffu-
sion operator) for the particular variables and symme-
try under consideration. In the present case these func-
tions are simple cosine and sine functions of �, but
for general spherical isotropic rotational diffusion the
functions are the surface spherical harmonics (or rather
the corresponding Legendre polynomials, see below),
and for anisotropic bodies we need the transformation
functions defined by the Wigner rotation matrices. As
for the special case above, the angular boundary con-
ditions for the general case result in integer variables,
similar to the integer k of Eq. (2), which enter in the
exponential terms in combination with the diffusion con-
stants. The normal modes of the decay process for the
general case [2–4] do not vary simply as the square
of integers times a diffusion constant since the diffu-
sion process can no longer be thought of as independent
diffusion relaxations about an axis. One must now con-
sider the angular dependence of the set of functions
defined by the Wigner rotation matrices, or the surface
spherical harmonics [25, 26, 28], which define the initial
distribution.

Initial photoselected distribution

The coefficients, ak and bk, of Eq. (2) are defined from the
initial distribution, P(�, 0) by Eq. (3). The general case
will be treated, where the absorption and emission transi-
tion dipoles can be at any particular angles relative to the
molecular n̂-axis and to each other. Refer to Figs. 1 and 4
for the angular definitions. The initial distribution of the ab-
sorption or the emission dipoles can be derived easily by
simple geometrical arguments. The absorption dipoles (with
unit vector â) are excited by light that is linearly polarized
along the ẑ laboratory axis, and the probability of absorp-
tion for any molecule is proportional to the square of the
vector dot product (ẑ · â)2. We express â in the coordinate
system (x̂�, ŷ�, n̂) in which two of the axes are in a plane
perpendicular to the vector n̂ (see Fig. 4).

â = (x̂� · â)x̂� + (ŷ� · â)ŷ� + (n̂ · â)n̂

Using the relationships

n̂ · â = cos θa x̂� · â = sin θa cos �a

n̂ · ẑ = cos ϕ x̂� · ẑ = sin ϕ

ŷ� · ẑ = 0

we have

ẑ · â = cos θa cos ϕ + sin θa sin ϕ cos �a

The distribution of excited absorption dipoles is independent
of θ , as we expect because of symmetry about the ẑ axis.

Thus we have

P(ϕ, θa,�a) = (ẑ · â)2 = Ca
0 + Ca

1 cos �a + Ca
2 cos 2�a (4)

where

Ca
0 = cos2 ϕ cos2 θa +

(
1

2

)
sin2 ϕ sin2 θa

Ca
1 = 2 cos ϕ cos θa sin ϕ sin θa

Ca
2 = 1

2

(
sin2 ϕ sin2 θa

)

This represents the initial distribution of the ensemble of
excited molecules in terms of the orientation of the photos-
elected absorption dipoles. This would be the correct distri-
bution for a technique, which would observe the change in
the population distribution of the absorption dipoles, such as
absorption dichroism [19].

For fluorescence or phosphorescence detection, the im-
portant initial distribution is given in terms of the photose-
lected emission dipoles. The initial probability distribution
of the emission dipoles of a photoselected samples of excited
molecules, P(ϕ, θe, φe) at t = 0 is related to P(ϕ, θa, φa) and
is obtained by simply replacing θa and �a in Eq. (4) by their
corresponding expressions in terms of θ e and øe.
Since

θea = θe − θa and φea = φe − φa,

and

ẑ · â = cos(θe − θea) cos ϕ + sin(θe − θea) sin ϕ cos(φe − φea),

we have at time zero

P(ϕ, θe, φe) = Ce
0 + Ce

1 cos φe + Ce
2 cos 2φe

+ Ce
3 sin φe + Ce

4 sin 2φe (5)

where

Ce
0 = cos2(θa) cos2 ϕ +

(
1

2

)
sin2(θa) sin2 ϕ

Ce
1 = 2 cos(θa) sin(θa) cos ϕ sin ϕ cos(φea)
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=
(

1

2

)
sin(2θa) sin(2ϕ) cos(φea)

Ce
2 = 1

2
sin2(θa) sin2 ϕ cos(2φea)

= 1

8
(1 − cos 2θa)(1 − cos 2ϕ) cos(2φea)

Ce
3 = 2 cos(θa) sin(θa) cos ϕ sin ϕ sin(φea)

=
(

1

2

)
sin(2θa) sin(2ϕ) sin(φea)

Ce
4 =

(
1

2

)
sin2(θa) sin2 ϕ sin(2φea)

= 1

8
(1 − cos 2θa)(1 − cos 2ϕ) sin(2φea)

To calculate this distribution, the angle between the absorp-
tion and emission transition dipoles must be known (i.e. θ ea

and øea); remember the emission dipoles are initially selected
by the polarized excitation light through the corresponding
absorption dipoles for each molecule that are selected by the
absorption process.

In contrast to the distribution of absorption dipoles we
now have an additional dependence upon sinøe and sin2øe,
since the molecules are selected by the absorption transi-
tion dipole, which is not necessarily parallel to the emission
dipole. For every φ (and θ ) the photoselected distribution of
dipoles relaxes to the static random distribution with a time
dependence given by

P(φe, t) = Ce
0 + (

Ce
1 cos φe + Ce

3 sin φe
)
e−Dt

+ (
Ce

2 cos 2φe + Ce
4 sin 2φe

)
e−4Dt , (6)

according to Eq. (2). Note that the Ce
i and Ca

i are all depen-
dent on the angle ϕ, but independent of θ (the polar angle
of the cylinder axis relative to the z-axis of the laboratory
frame), due to our choice of the laboratory z-axis parallel
to the direction of polarization of the exciting light. Also,
whether we select the relaxation of the absorption or the
emission transition dipoles for observation, we find a time
dependence involving two exponentials with time constants
1/Dφ and 1/4Dφ .

Observing the rotational diffusion by measuring
the anisotropy decay

Up to this point we have not yet considered the detection
of the rotational diffusion, which is done by observing the
luminescence through a linear polarizer along the ŷ axis. The
axis of the polarizer is oriented parallel to the ẑ axis (vertical
position) or the x̂ axis (horizontal position). The expres-
sions for the observed signals are derived by considering the

projection of the emission dipole (ê) onto the laboratory ẑ
(vertical signal) or x̂ (horizontal signal) axis. The distribu-
tion of the emission dipoles is given for all times by Eq. (6).
To obtain an expression for the observed signals this distri-
bution is then multiplied by (ẑ · ê)2 or (x̂ · ê)2 and integrated
over all the available angles of the equilibrium distribution
of the molecular n̂ axes, since we observe the total ensemble
of molecules through the polarizer.

The vertical signal is

=
∫ 2π

0

∫ 2π

0

∫ π

0
P(ϕ,�e, t) · (ẑ · ê)2 sin(ϕ)dϕdθdφe

and the horizontal signal is

=
∫ 2π

0

∫ 2π

0

∫ π

0
P(ϕ,�e, t) · (x̂ · ê)2 sin(ϕ)dϕdθdφe.

(ẑ · ê)2 is given by an equation identical to Eq. (4) except θa

and øa are replaced by θ e and øe respectively. (x̂ · ê)2 is more
complicated due to the fact that the projection of ê onto the
x̂ axis is not independent of θ . We have, from Fig. 4

ê = (n̂ · ê)n̂ + (x̂�, ê)x̂� + (ŷ�, ê)ŷ�

x̂ · n̂ = sin ϕ cos θ x̂ · x̂� = − cos θ cos ϕ

n̂ · ê = cos θe ŷ� · ê = sin θe sin φe

x̂� · ê = sin θe cos φe x̂ · ŷ� = sin θ

We have then,

(x̂ · ê) = cos θe sin ϕ cos θ − sin θe cos φe cos θ cos ϕ

+ sin θe sin φe sin θ = cos θ (cos θe sin ϕ

− sin θe cos φe cos ϕ) + sin θe sin φe sin θ

Substituting these expressions into the equations for the
vertical and horizontal signals will furnish the expressions
we need to calculate the anisotropy decay. The integrations
to calculate the observed vertical and horizontal fluorescence
polarization components are simplified when we consider the
orthogonality of the cos(nφe) and sin(mφe) functions. The
solutions given by Eqs. (7) and (8) below, are most easily
obtained by integrating first over dθ to simplify the (x̂ · ê)2

case, then over døe to take advantage of the orthogonality of
the cos(nφe) and sin(mφe) terms, and finally integrating over
dφ. Because we allow the angle øe to have all values, the
sin(nøe) terms of Eq. (6) do not contribute to the amplitude
of the signal (the integration over øe of all terms involving
cos(nøe)sin(møe) is zero). This means that there are parts of
the photoselected distribution over øe (i.e. the terms involv-
ing sinøe, and sin2øe), which are relaxing exponentially with
time, but which we can not observe with this experimental
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method. This characteristic of detection selection is also true
for the general anisotropic case. The initial photoselection
process selects a distribution that is expressed as a sum over
certain of the eigenfunctions of the diffusion operator. In our
simple case there are five eigenfunction terms (Eq. (5)). The
observation process further selects from the photoselected
components only the terms that contribute to the measured
anisotropy dynamic signal. Note that even if we limit the
range of relaxation of the angle øe, but have a random initial
total distribution of molecules, Eq. (4) still holds, since even
a randomly distributed static assembly of molecules is pho-
toselected. However, the observation measurement selects
the modes of the dynamic relaxation of this initial distribu-
tion that we detect as a signal. This would be different than
derived in Eq. (5) above if the rotation of each molecule were
to be constrained.

The integrations give the following expressions for the
projections of the vertical and horizontal signals. These ex-
pressions for the projections onto the vertical and horizontal
axes are proportional to the signals. We have not considered
the spectroscopic, instrumentation or luminescence factors
(such as the absorption coefficients or the quantum yields),
but all these factors will be the same for the vertical and
horizontal signals. If there are instrumentation differences
between vertical and horizontal measurements, these are ac-
counted for and corrected experimentally by determining the
relative sensitivity factors for the monochrometer and detec-
tor for the different polarizer positions. These factors will all
cancel in the final expression for the anisotropy.

The vertical signal is

vert. sig. = 4π2

(
sin2 θe

((
4

15

)
sin2 θa + (

2
15

)
cos2 θa

)

+ cos2 θe
((

2
15

)
sin2 θa + (

6
15

)
cos2 θa

)

)

+
(

32π2

15

)
(cos θe sin θe cos θa sin θa cos φea)e−Dt

+
(

8π2

15

) (
sin2 θe sin2 θe cos 2φea

)
e−4Dt (7)

And the horizontal signal is

hort. sig. = 2π2

(
sin2 θe

((
6
15

)
sin2 θa + (

8
15

)
cos2 θa

)

+ cos2 θe
((

8
15

)
sin2 θa + (

4
15

)
cos2 θa

)

)

+
(

16π2

15

)
(cos θe sin θe cos θa sin θa cos φea)e−Dt

+
(

4π2

15

) (
sin2 θe sin2 θe cos 2φea

)
e−4Dt (8)

The total luminescence signal is independent of the time
dependence of the diffusion process, since it is only depen-
dent on the number of luminescent molecules that have been

excited. The total luminescence is given by

Total luminescence = vert. signal + 2(horiz. signal)

=
(

8

3

)
π2 (9)

Since all the signals, which we have calculated above, are
only proportional to the actual signals, this is the normaliza-
tion factor. The anisotropy, r, which is the quantity that is
usually either measured directly or employed to express the
results, is given by

r = (vert. signal − horiz. signal)/(total signal) (10)

r =
(

1

10

) (
3 cos2 θa − 1

)(
3 cos2 θe − 1

)

+
(

6

5

)
(cos θe sin θe cos θa sin θa cos φea)e−Dt

+
(

3

10

) (
sin2 θa sin2 θe cos 2φea

)
e−4Dt (10a)

Equation (10a) is the same as derived by setting all diffusion
coefficients except one in the anisotropic rotator, or for the
ellipsoid of revolution, to zero. This is conveniently demon-
strated in a recent popular book on fluorescence [29]. The
equations given in Valeur’s book, Eq. (10b), and often in the
literature, appear a bit different (Eq. (10b)).

r =
(

1

10

) (
3 cos2 θa − 1

)(
3 cos2 θe − 1

)

+
(

3

10

)
(sin 2θe sin 2θa cos φea)e−Dt

+
(

3

10

) (
sin2 θa sin2 θe

(
cos2 φea − sin2 φea

))
e−4Dt

(10b)

However, using a few trigonometric identities the expres-
sions can be shown to be identical.

Some interesting behavior is predicted by these results.
First, the effects of the absorption and emission dipoles are
equivalent and symmetrical. Thus if either the emission or
the absorption dipole is oriented along the cylinder axis of
rotation (θa = 0 or θe = 0), there will be no anisotropy de-
cay. Both time-dependent terms go to zero no matter what
the angle øea is. In this case one would have no indication
of any rotational diffusion—the result would be the same as
if Dφ = 0. This happens for two different physical reasons.
If the emission dipole is oriented parallel to the cylindrical
axis there would be no change in the polarization of the flu-
orescence emission as the cylinder rotated. However, if the
absorption axis is parallel to the cylinder axis, there is a flat
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angular distribution of the photoselected emission vectors
in the ensemble of molecules; therefore, as the cylinder ro-
tates, although the emission vector of each molecule does
change orientation, the ensemble of molecules statistically
always retains the uniform distribution of emission orienta-
tions. The best way to measure diffusion of the cylindrical
axis (lifting the restriction of rotation of the cylinder axis of
the molecule through the θ angle) is if θa = 0 or θe = 0, as
then only the rotation of the cylinder axis can be observed;
this is shown nicely in the solution for a rotating ellipsoid,
where the rotational diffusion of the cylinder axis is allowed
(see for instance Valeur [29]. Interestingly, single molecule
experiments can detect the rotational relaxation when θa = 0,
because for each molecule there is a particular orientation
of the emission axis for each individual molecule, and its
change in orientation by rotational diffusion is observable.
If θ e = 0, rotational diffusion cannot be observed in single
molecule experiments; although, different orientations of the
individual molecules can be selected through the absorption
dipoles. Also, if either of the angles θa or θ e is equal to the
“magic angle (54.74 degrees), that is, if the orientation of ei-
ther the absorption or emission axis is at the magic angle rel-
ative to the cylinder axis, the steady state anisotropy (t = ∞ )
is zero. In this case, the components of the anisotropy can
either increase or decrease, depending on the relative orien-
tations of the absorption and emission transition moments.

Comparison to the rotation of a sphere

The rotation of a sphere has been commented on above.
Although the derivation is more complex than the cylinder
rotating around the cylindrical axis, it is relatively simple
since it has complete rotational symmetry. Here we will out-
line a similar procedure up to the event of photoselection in
order to show the parallels in the derivation to what we have
presented for a rotating cylinder. A nice account of this can
be found in the literature [16]. The following derivation will
follow closely that of Williams; a similar—more complex—
derivation using spherical harmonics, and for ellipsoids, can
be found in [19]. Berne and Pecora [18] have given a some-
what different derivation in terms of spherical harmonics.
The diffusion equation for the probability that a point on the
surface of an isotropic sphere of unit radius is within a solid
angle 	 at time t, f (	, t)d	, assuming that the direction at
t = 0 is along the + z-vector, is

Dr∇2 f (	, t) = Dr

sin2 θ

×
[
sin θ

∂

∂θ
sin θ

∂

∂θ
( f (	, t)) + ∂2

∂φ2
f (	, t)

]

= ∂

∂t
f (	, t). (11)

Dr is the rotational diffusion constant of a sphere, Dr,sphere =
kT/8πηa3, where η is the viscosity of the solvent and a is
the radius of the sphere. There is a single diffusion constant
(just as for our case of a rotating cylinder about the cylin-
drical axis) due to of the symmetry of the sphere. Because
we are concerned with the photoselection of the absorption
transition dipole by the excitation light in a particular direc-
tion, the diffusion equation depends only on the polar angle
θ and not on the rotational angle ø about the z-axis. Then the
diffusion equation becomes

(1 − cos2 θ )
∂2 f (	, t)

∂(cos θ )2
− 2 cos(θ )

∂ f (	, t)

∂ cos(θ )
= 1

Dr

∂ f (	, t)

∂t

= (1 − u2)
∂2 f (	, t)

∂u2
− 2u

∂ f (	, t)

∂u
(12)

where following Williams [16] we substitute u = cos θ . Sim-
ilar to our rotating cylinder we can expand f (	, t) in an
appropriate set of orthogonal functions; in this case the or-
thogonal functions are the Legendre polynomials, Pn(u), and
we separate the spatial and temporal variables. Each compo-
nent of the Legendre polynomials will have a corresponding
time dependent function—just as we have done for the ro-
tating cylinder.

f (	, t) =
∞∑

n=0

Pn(u)an(t). (13)

This solution can be substituted into the differential equa-
tion for diffusion, and making use of the expression
(1 − u2) ∂2 Pn (u)

∂u2 − 2u ∂ Pn (u)
∂u = −n(n + 1)Pn(u) (where n is an

integer; this is the differential equation defining the Legendre
polynomials as solutions) [30–32] we have

−Dr

∞∑

n=0

n(n + 1)Pn(u)an(t) =
∞∑

n=0

Pn(u)
d

dt
an(t). (14)

Equating terms of the same order in the series, leads to the
individual equations

−Dr n(n + 1)Pn(u)an(t) = Pn(u)
d

dt
an(t). (15)

The solution to this can be solved by separating the spatial
and temporal variables, giving

an(t) = an(0) exp(−n(n + 1)Dr t). (16)

And the solution to the diffusion equation for the probability
function f (	, t) is

f (	, t) =
∞∑

n=0

Pn(cos θ )an(0) exp(−n(n + 1)Dr t). (17)
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We will not follow this derivation for the sphere further,
which would lead us to expressions for an(0) and to the
expression for the anisotropy decay. This is extensively dis-
cussed in the literature. But we note that the solution for the
diffusion process involves an infinite sum over components
of the orthogonal functions appropriate for the symmetry,
and the higher components relax faster, just as for our ro-
tating cylinder. It turns out that for fluorescence anisotropy
the only component left in the entire sum is for n = 2. This
is heuristically reasonable, because the probability that the
transition dipoles will be excited by light polarized along the
z-axis, or observed with a polarizer oriented along the z-axis,
is proportional to cos2θ , and cos2 θ = 1/3(2P2(cos θ ) + 1).
Therefore the sphere will rotate with a rotational correlation
time of τ

sphere
r = 1/(6Dr ), as derived originally by Perrin

[33]. A nice account of rotation of a sphere and ellipsoids
employing incremental rotations, can be found in an article
by Weber [34]; this follows the methodology in an earlier
article by Soleillet [35].

Recapitulation and comparison to the general
case of anisotropic rotators

This section is mainly for those who want to look at the more
advanced derivations of the anisotropy decay for completely
anisotropic rotators. The theoretical work of [2, 3] (the pub-
lication by Belford et al. [4] presents only the results, and
does not show their derivation), hereafter referred to as ER
and CE respectively, have both used the Green’s function ap-
proach to solve the diffusion differential equation. Green’s
function methods are closely related to the method of Fourier
employed in here. A lucid discussion of the relation of these
two mathematical approaches can be found in [36], pp. 55–
62, 71–79 and 177–188. Heuristically, the difference in the
two methods is an interchange in the order of integration and
summation. The diffusion of a general anisotropic rigid rotor
is described by the diffusion equation

d

dt
f (	, t) = −L f (	, t) (18)

where f (	, t) is the distribution function at time t and solid
angle coordinates 	, and L is the corresponding diffusion op-
erator. This equation is analogous to Eq. (1). The general so-
lution of Eq. (18) can be written as a series expansion in terms
of the appropriate normalized eigenfunctions, �n, of L.
∑

n

an�n(	)e−(λn t) = f (	, t) (19)

where

an =
∫

	0

f (	0)�∗
n (	0)d	0

(20)
λn = nth eigenvalue of L

The subscript “0” refers to the zero time condition. We can
write Eq. (19) into the form of a Green’s function solution
by interchanging the order of the integration and summation
to give:

f (	, t) =
∫

	0

f (	0)G(	0,	, t)d	0 (21)

where

G(	0,	, t) =
∑

n

�∗
n (	0)�n(	)e−(λn t) (22)

is the “Greens function” (see [30]). At time t = 0 the Green’s
function is a delta function.

We can now compare the above derivation of the cylindri-
cal diffusive motion to the steps of the more general deriva-
tions. Favro [1] indicated how to solve the rotational diffu-
sion equation for the general anisotropic rigid body by the
above Green’s function method, which is straightforward as
long as the diffusion operator, L, has a complete set of eigen-
functions, �n. Favro [1] noted that the anisotropic rotational
diffusion operator is analogous to the Hamiltonian for a quan-
tum mechanical anisotropic rigid rotor and he showed how
to expand the eigenfunctions for the anisotropic rotor, �n,
in terms of the eigenfunctions of a symmetric rotator, �nm

[37, 38]. He has tabulated the expansion coefficients and the
corresponding eigenvalues in terms of the principal axes of
the diagonalized diffusion tensor [1].

With these general comments in mind we now recapitulate
the major steps in the derivation of the simple case and point
out the analogous steps in the general derivations of ER
and CE. The references to equations in this work will be in
parenthesis.

1. The diffusion equation (Eq. (1)) appropriate for the geom-
etry at hand is chosen. This is Eq. (1) of CE and Eq. (2.2)
of ER.

2. The eigenfunctions and eigenvalues (Eq. (2)) of the dif-
fusion operator, L, are found. These were found by Favro
[1], and are defined by Eq. (5) of CE and Eq. (2.8) of ER.
For the anisotropic case these functions must be expanded
in terms of the symmetric eigenfunctions (see also Favro
[1]).

3. The general solution is then expressed in terms of a sum
of these eigenfunctions and the exponential time decay
functions (Eq. (2)). Each eigenfunction has a particular
time constant, or a set of, exponential time constants,
associated with it, so that each term of the sum is a solution
of the diffusion equation. These eigenfunctions represent
angular distributions of the excited molecules, which will
decay with one time constant. See Eqs. (3), (4), (9) and
(10) of CE, and Eqs. (2.9) and (2.10) of ER (in Eq. (2.9) of
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ER the integration should be over the 	0 variable rather
than 	).

4. The initial conditions are then considered (Eqs. (4),
(5) and (2)), which determine the initial distribution of
molecules. This is essentially a straight-forward geomet-
ric problem, and is done in CE by Eqs. (7) and (10), and
in ER by Eqs. (3.2), (3.3) and (2.9).

5. The final signal is then calculated by projecting the time
dependent solution for the distribution of emission dipoles
onto the two axes of observation (Eq. (6)). Equations (8),
(11) and (12) of CE, and Eqs. (3.2) and (3.4) (using Eqs.
(3.5)–(3.8)) of ER. The axes onto which the emission
dipoles are projected are the directions of polarization in
the laboratory frame of reference that are used for mea-
suring the anisotropy. These projections must be squared
to represent the intensities of fluorescence.

6. The anisotropy is calculated (Eq. (7)), which is Eq. (13)
of CE and Eq. (3.4) of ER.
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